3.219 \(\int \frac {a+b \tanh ^{-1}(c x^{3/2})}{x^3} \, dx\)

Optimal. Leaf size=188 \[ -\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}-\frac {1}{8} b c^{4/3} \log \left (c^{2/3} x-\sqrt [3]{c} \sqrt {x}+1\right )+\frac {1}{8} b c^{4/3} \log \left (c^{2/3} x+\sqrt [3]{c} \sqrt {x}+1\right )+\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {1-2 \sqrt [3]{c} \sqrt {x}}{\sqrt {3}}\right )-\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {2 \sqrt [3]{c} \sqrt {x}+1}{\sqrt {3}}\right )+\frac {1}{2} b c^{4/3} \tanh ^{-1}\left (\sqrt [3]{c} \sqrt {x}\right )-\frac {3 b c}{2 \sqrt {x}} \]

[Out]

1/2*(-a-b*arctanh(c*x^(3/2)))/x^2+1/2*b*c^(4/3)*arctanh(c^(1/3)*x^(1/2))-1/8*b*c^(4/3)*ln(1+c^(2/3)*x-c^(1/3)*
x^(1/2))+1/8*b*c^(4/3)*ln(1+c^(2/3)*x+c^(1/3)*x^(1/2))+1/4*b*c^(4/3)*arctan(1/3*(1-2*c^(1/3)*x^(1/2))*3^(1/2))
*3^(1/2)-1/4*b*c^(4/3)*arctan(1/3*(1+2*c^(1/3)*x^(1/2))*3^(1/2))*3^(1/2)-3/2*b*c/x^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {6097, 325, 329, 296, 634, 618, 204, 628, 206} \[ -\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}-\frac {1}{8} b c^{4/3} \log \left (c^{2/3} x-\sqrt [3]{c} \sqrt {x}+1\right )+\frac {1}{8} b c^{4/3} \log \left (c^{2/3} x+\sqrt [3]{c} \sqrt {x}+1\right )+\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {1-2 \sqrt [3]{c} \sqrt {x}}{\sqrt {3}}\right )-\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {2 \sqrt [3]{c} \sqrt {x}+1}{\sqrt {3}}\right )+\frac {1}{2} b c^{4/3} \tanh ^{-1}\left (\sqrt [3]{c} \sqrt {x}\right )-\frac {3 b c}{2 \sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x^(3/2)])/x^3,x]

[Out]

(-3*b*c)/(2*Sqrt[x]) + (Sqrt[3]*b*c^(4/3)*ArcTan[(1 - 2*c^(1/3)*Sqrt[x])/Sqrt[3]])/4 - (Sqrt[3]*b*c^(4/3)*ArcT
an[(1 + 2*c^(1/3)*Sqrt[x])/Sqrt[3]])/4 + (b*c^(4/3)*ArcTanh[c^(1/3)*Sqrt[x]])/2 - (a + b*ArcTanh[c*x^(3/2)])/(
2*x^2) - (b*c^(4/3)*Log[1 - c^(1/3)*Sqrt[x] + c^(2/3)*x])/8 + (b*c^(4/3)*Log[1 + c^(1/3)*Sqrt[x] + c^(2/3)*x])
/8

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 296

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[-(a/b), n]], s = Denominator[Rt
[-(a/b), n]], k, u}, Simp[u = Int[(r*Cos[(2*k*m*Pi)/n] - s*Cos[(2*k*(m + 1)*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi
)/n]*x + s^2*x^2), x] + Int[(r*Cos[(2*k*m*Pi)/n] + s*Cos[(2*k*(m + 1)*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x
 + s^2*x^2), x]; (2*r^(m + 2)*Int[1/(r^2 - s^2*x^2), x])/(a*n*s^m) + Dist[(2*r^(m + 1))/(a*n*s^m), Sum[u, {k,
1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && NegQ[a/b]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 6097

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
nh[c*x^n]))/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[(x^(n - 1)*(d*x)^(m + 1))/(1 - c^2*x^(2*n)), x], x
] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{x^3} \, dx &=-\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}+\frac {1}{4} (3 b c) \int \frac {1}{x^{3/2} \left (1-c^2 x^3\right )} \, dx\\ &=-\frac {3 b c}{2 \sqrt {x}}-\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}+\frac {1}{4} \left (3 b c^3\right ) \int \frac {x^{3/2}}{1-c^2 x^3} \, dx\\ &=-\frac {3 b c}{2 \sqrt {x}}-\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}+\frac {1}{2} \left (3 b c^3\right ) \operatorname {Subst}\left (\int \frac {x^4}{1-c^2 x^6} \, dx,x,\sqrt {x}\right )\\ &=-\frac {3 b c}{2 \sqrt {x}}-\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}+\frac {1}{2} \left (b c^{5/3}\right ) \operatorname {Subst}\left (\int \frac {1}{1-c^{2/3} x^2} \, dx,x,\sqrt {x}\right )+\frac {1}{2} \left (b c^{5/3}\right ) \operatorname {Subst}\left (\int \frac {-\frac {1}{2}-\frac {\sqrt [3]{c} x}{2}}{1-\sqrt [3]{c} x+c^{2/3} x^2} \, dx,x,\sqrt {x}\right )+\frac {1}{2} \left (b c^{5/3}\right ) \operatorname {Subst}\left (\int \frac {-\frac {1}{2}+\frac {\sqrt [3]{c} x}{2}}{1+\sqrt [3]{c} x+c^{2/3} x^2} \, dx,x,\sqrt {x}\right )\\ &=-\frac {3 b c}{2 \sqrt {x}}+\frac {1}{2} b c^{4/3} \tanh ^{-1}\left (\sqrt [3]{c} \sqrt {x}\right )-\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}-\frac {1}{8} \left (b c^{4/3}\right ) \operatorname {Subst}\left (\int \frac {-\sqrt [3]{c}+2 c^{2/3} x}{1-\sqrt [3]{c} x+c^{2/3} x^2} \, dx,x,\sqrt {x}\right )+\frac {1}{8} \left (b c^{4/3}\right ) \operatorname {Subst}\left (\int \frac {\sqrt [3]{c}+2 c^{2/3} x}{1+\sqrt [3]{c} x+c^{2/3} x^2} \, dx,x,\sqrt {x}\right )-\frac {1}{8} \left (3 b c^{5/3}\right ) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt [3]{c} x+c^{2/3} x^2} \, dx,x,\sqrt {x}\right )-\frac {1}{8} \left (3 b c^{5/3}\right ) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt [3]{c} x+c^{2/3} x^2} \, dx,x,\sqrt {x}\right )\\ &=-\frac {3 b c}{2 \sqrt {x}}+\frac {1}{2} b c^{4/3} \tanh ^{-1}\left (\sqrt [3]{c} \sqrt {x}\right )-\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}-\frac {1}{8} b c^{4/3} \log \left (1-\sqrt [3]{c} \sqrt {x}+c^{2/3} x\right )+\frac {1}{8} b c^{4/3} \log \left (1+\sqrt [3]{c} \sqrt {x}+c^{2/3} x\right )-\frac {1}{4} \left (3 b c^{4/3}\right ) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-2 \sqrt [3]{c} \sqrt {x}\right )+\frac {1}{4} \left (3 b c^{4/3}\right ) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 \sqrt [3]{c} \sqrt {x}\right )\\ &=-\frac {3 b c}{2 \sqrt {x}}+\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {1-2 \sqrt [3]{c} \sqrt {x}}{\sqrt {3}}\right )-\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {1+2 \sqrt [3]{c} \sqrt {x}}{\sqrt {3}}\right )+\frac {1}{2} b c^{4/3} \tanh ^{-1}\left (\sqrt [3]{c} \sqrt {x}\right )-\frac {a+b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}-\frac {1}{8} b c^{4/3} \log \left (1-\sqrt [3]{c} \sqrt {x}+c^{2/3} x\right )+\frac {1}{8} b c^{4/3} \log \left (1+\sqrt [3]{c} \sqrt {x}+c^{2/3} x\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 220, normalized size = 1.17 \[ -\frac {a}{2 x^2}-\frac {1}{4} b c^{4/3} \log \left (1-\sqrt [3]{c} \sqrt {x}\right )+\frac {1}{4} b c^{4/3} \log \left (\sqrt [3]{c} \sqrt {x}+1\right )-\frac {1}{8} b c^{4/3} \log \left (c^{2/3} x-\sqrt [3]{c} \sqrt {x}+1\right )+\frac {1}{8} b c^{4/3} \log \left (c^{2/3} x+\sqrt [3]{c} \sqrt {x}+1\right )-\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {2 \sqrt [3]{c} \sqrt {x}-1}{\sqrt {3}}\right )-\frac {1}{4} \sqrt {3} b c^{4/3} \tan ^{-1}\left (\frac {2 \sqrt [3]{c} \sqrt {x}+1}{\sqrt {3}}\right )-\frac {b \tanh ^{-1}\left (c x^{3/2}\right )}{2 x^2}-\frac {3 b c}{2 \sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c*x^(3/2)])/x^3,x]

[Out]

-1/2*a/x^2 - (3*b*c)/(2*Sqrt[x]) - (Sqrt[3]*b*c^(4/3)*ArcTan[(-1 + 2*c^(1/3)*Sqrt[x])/Sqrt[3]])/4 - (Sqrt[3]*b
*c^(4/3)*ArcTan[(1 + 2*c^(1/3)*Sqrt[x])/Sqrt[3]])/4 - (b*ArcTanh[c*x^(3/2)])/(2*x^2) - (b*c^(4/3)*Log[1 - c^(1
/3)*Sqrt[x]])/4 + (b*c^(4/3)*Log[1 + c^(1/3)*Sqrt[x]])/4 - (b*c^(4/3)*Log[1 - c^(1/3)*Sqrt[x] + c^(2/3)*x])/8
+ (b*c^(4/3)*Log[1 + c^(1/3)*Sqrt[x] + c^(2/3)*x])/8

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 214, normalized size = 1.14 \[ -\frac {2 \, \sqrt {3} b \left (-c\right )^{\frac {1}{3}} c x^{2} \arctan \left (\frac {2}{3} \, \sqrt {3} \left (-c\right )^{\frac {1}{3}} \sqrt {x} - \frac {1}{3} \, \sqrt {3}\right ) + 2 \, \sqrt {3} b c^{\frac {4}{3}} x^{2} \arctan \left (\frac {2}{3} \, \sqrt {3} c^{\frac {1}{3}} \sqrt {x} - \frac {1}{3} \, \sqrt {3}\right ) + b \left (-c\right )^{\frac {1}{3}} c x^{2} \log \left (c x + \left (-c\right )^{\frac {2}{3}} \sqrt {x} - \left (-c\right )^{\frac {1}{3}}\right ) + b c^{\frac {4}{3}} x^{2} \log \left (c x - c^{\frac {2}{3}} \sqrt {x} + c^{\frac {1}{3}}\right ) - 2 \, b \left (-c\right )^{\frac {1}{3}} c x^{2} \log \left (c \sqrt {x} - \left (-c\right )^{\frac {2}{3}}\right ) - 2 \, b c^{\frac {4}{3}} x^{2} \log \left (c \sqrt {x} + c^{\frac {2}{3}}\right ) + 12 \, b c x^{\frac {3}{2}} + 2 \, b \log \left (-\frac {c^{2} x^{3} + 2 \, c x^{\frac {3}{2}} + 1}{c^{2} x^{3} - 1}\right ) + 4 \, a}{8 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x^(3/2)))/x^3,x, algorithm="fricas")

[Out]

-1/8*(2*sqrt(3)*b*(-c)^(1/3)*c*x^2*arctan(2/3*sqrt(3)*(-c)^(1/3)*sqrt(x) - 1/3*sqrt(3)) + 2*sqrt(3)*b*c^(4/3)*
x^2*arctan(2/3*sqrt(3)*c^(1/3)*sqrt(x) - 1/3*sqrt(3)) + b*(-c)^(1/3)*c*x^2*log(c*x + (-c)^(2/3)*sqrt(x) - (-c)
^(1/3)) + b*c^(4/3)*x^2*log(c*x - c^(2/3)*sqrt(x) + c^(1/3)) - 2*b*(-c)^(1/3)*c*x^2*log(c*sqrt(x) - (-c)^(2/3)
) - 2*b*c^(4/3)*x^2*log(c*sqrt(x) + c^(2/3)) + 12*b*c*x^(3/2) + 2*b*log(-(c^2*x^3 + 2*c*x^(3/2) + 1)/(c^2*x^3
- 1)) + 4*a)/x^2

________________________________________________________________________________________

giac [A]  time = 0.34, size = 194, normalized size = 1.03 \[ -\frac {1}{4} \, \sqrt {3} b c {\left | c \right |}^{\frac {1}{3}} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \sqrt {x} + \frac {1}{{\left | c \right |}^{\frac {1}{3}}}\right )} {\left | c \right |}^{\frac {1}{3}}\right ) - \frac {1}{4} \, \sqrt {3} b c {\left | c \right |}^{\frac {1}{3}} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \sqrt {x} - \frac {1}{{\left | c \right |}^{\frac {1}{3}}}\right )} {\left | c \right |}^{\frac {1}{3}}\right ) + \frac {b c^{3} \log \left (x + \frac {\sqrt {x}}{{\left | c \right |}^{\frac {1}{3}}} + \frac {1}{{\left | c \right |}^{\frac {2}{3}}}\right )}{8 \, {\left | c \right |}^{\frac {5}{3}}} - \frac {b c^{3} \log \left (x - \frac {\sqrt {x}}{{\left | c \right |}^{\frac {1}{3}}} + \frac {1}{{\left | c \right |}^{\frac {2}{3}}}\right )}{8 \, {\left | c \right |}^{\frac {5}{3}}} + \frac {1}{4} \, b c {\left | c \right |}^{\frac {1}{3}} \log \left (\sqrt {x} + \frac {1}{{\left | c \right |}^{\frac {1}{3}}}\right ) - \frac {b c^{3} \log \left ({\left | \sqrt {x} - \frac {1}{{\left | c \right |}^{\frac {1}{3}}} \right |}\right )}{4 \, {\left | c \right |}^{\frac {5}{3}}} - \frac {b \log \left (-\frac {c x^{\frac {3}{2}} + 1}{c x^{\frac {3}{2}} - 1}\right )}{4 \, x^{2}} - \frac {3 \, b c x^{\frac {3}{2}} + a}{2 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x^(3/2)))/x^3,x, algorithm="giac")

[Out]

-1/4*sqrt(3)*b*c*abs(c)^(1/3)*arctan(1/3*sqrt(3)*(2*sqrt(x) + 1/abs(c)^(1/3))*abs(c)^(1/3)) - 1/4*sqrt(3)*b*c*
abs(c)^(1/3)*arctan(1/3*sqrt(3)*(2*sqrt(x) - 1/abs(c)^(1/3))*abs(c)^(1/3)) + 1/8*b*c^3*log(x + sqrt(x)/abs(c)^
(1/3) + 1/abs(c)^(2/3))/abs(c)^(5/3) - 1/8*b*c^3*log(x - sqrt(x)/abs(c)^(1/3) + 1/abs(c)^(2/3))/abs(c)^(5/3) +
 1/4*b*c*abs(c)^(1/3)*log(sqrt(x) + 1/abs(c)^(1/3)) - 1/4*b*c^3*log(abs(sqrt(x) - 1/abs(c)^(1/3)))/abs(c)^(5/3
) - 1/4*b*log(-(c*x^(3/2) + 1)/(c*x^(3/2) - 1))/x^2 - 1/2*(3*b*c*x^(3/2) + a)/x^2

________________________________________________________________________________________

maple [A]  time = 0.04, size = 180, normalized size = 0.96 \[ -\frac {a}{2 x^{2}}-\frac {b \arctanh \left (c \,x^{\frac {3}{2}}\right )}{2 x^{2}}-\frac {3 b c}{2 \sqrt {x}}-\frac {b c \ln \left (\sqrt {x}-\left (\frac {1}{c}\right )^{\frac {1}{3}}\right )}{4 \left (\frac {1}{c}\right )^{\frac {1}{3}}}+\frac {b c \ln \left (x +\left (\frac {1}{c}\right )^{\frac {1}{3}} \sqrt {x}+\left (\frac {1}{c}\right )^{\frac {2}{3}}\right )}{8 \left (\frac {1}{c}\right )^{\frac {1}{3}}}-\frac {b c \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \sqrt {x}}{\left (\frac {1}{c}\right )^{\frac {1}{3}}}+1\right )}{3}\right )}{4 \left (\frac {1}{c}\right )^{\frac {1}{3}}}+\frac {b c \ln \left (\sqrt {x}+\left (\frac {1}{c}\right )^{\frac {1}{3}}\right )}{4 \left (\frac {1}{c}\right )^{\frac {1}{3}}}-\frac {b c \ln \left (x -\left (\frac {1}{c}\right )^{\frac {1}{3}} \sqrt {x}+\left (\frac {1}{c}\right )^{\frac {2}{3}}\right )}{8 \left (\frac {1}{c}\right )^{\frac {1}{3}}}-\frac {b c \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \sqrt {x}}{\left (\frac {1}{c}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{4 \left (\frac {1}{c}\right )^{\frac {1}{3}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x^(3/2)))/x^3,x)

[Out]

-1/2*a/x^2-1/2*b/x^2*arctanh(c*x^(3/2))-3/2*b*c/x^(1/2)-1/4*b*c/(1/c)^(1/3)*ln(x^(1/2)-(1/c)^(1/3))+1/8*b*c/(1
/c)^(1/3)*ln(x+(1/c)^(1/3)*x^(1/2)+(1/c)^(2/3))-1/4*b*c*3^(1/2)/(1/c)^(1/3)*arctan(1/3*3^(1/2)*(2/(1/c)^(1/3)*
x^(1/2)+1))+1/4*b*c/(1/c)^(1/3)*ln(x^(1/2)+(1/c)^(1/3))-1/8*b*c/(1/c)^(1/3)*ln(x-(1/c)^(1/3)*x^(1/2)+(1/c)^(2/
3))-1/4*b*c*3^(1/2)/(1/c)^(1/3)*arctan(1/3*3^(1/2)*(2/(1/c)^(1/3)*x^(1/2)-1))

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 168, normalized size = 0.89 \[ -\frac {1}{8} \, {\left ({\left (2 \, \sqrt {3} c^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, c^{\frac {2}{3}} \sqrt {x} + c^{\frac {1}{3}}\right )}}{3 \, c^{\frac {1}{3}}}\right ) + 2 \, \sqrt {3} c^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, c^{\frac {2}{3}} \sqrt {x} - c^{\frac {1}{3}}\right )}}{3 \, c^{\frac {1}{3}}}\right ) - c^{\frac {1}{3}} \log \left (c^{\frac {2}{3}} x + c^{\frac {1}{3}} \sqrt {x} + 1\right ) + c^{\frac {1}{3}} \log \left (c^{\frac {2}{3}} x - c^{\frac {1}{3}} \sqrt {x} + 1\right ) - 2 \, c^{\frac {1}{3}} \log \left (\frac {c^{\frac {1}{3}} \sqrt {x} + 1}{c^{\frac {1}{3}}}\right ) + 2 \, c^{\frac {1}{3}} \log \left (\frac {c^{\frac {1}{3}} \sqrt {x} - 1}{c^{\frac {1}{3}}}\right ) + \frac {12}{\sqrt {x}}\right )} c + \frac {4 \, \operatorname {artanh}\left (c x^{\frac {3}{2}}\right )}{x^{2}}\right )} b - \frac {a}{2 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x^(3/2)))/x^3,x, algorithm="maxima")

[Out]

-1/8*((2*sqrt(3)*c^(1/3)*arctan(1/3*sqrt(3)*(2*c^(2/3)*sqrt(x) + c^(1/3))/c^(1/3)) + 2*sqrt(3)*c^(1/3)*arctan(
1/3*sqrt(3)*(2*c^(2/3)*sqrt(x) - c^(1/3))/c^(1/3)) - c^(1/3)*log(c^(2/3)*x + c^(1/3)*sqrt(x) + 1) + c^(1/3)*lo
g(c^(2/3)*x - c^(1/3)*sqrt(x) + 1) - 2*c^(1/3)*log((c^(1/3)*sqrt(x) + 1)/c^(1/3)) + 2*c^(1/3)*log((c^(1/3)*sqr
t(x) - 1)/c^(1/3)) + 12/sqrt(x))*c + 4*arctanh(c*x^(3/2))/x^2)*b - 1/2*a/x^2

________________________________________________________________________________________

mupad [B]  time = 7.37, size = 228, normalized size = 1.21 \[ \frac {b\,c^{4/3}\,\ln \left (\frac {c^{1/3}\,\sqrt {x}+1}{c^{1/3}\,\sqrt {x}-1}\right )}{4}-\frac {a}{2\,x^2}+\frac {\ln \left (1-c\,x^{3/2}\right )\,\left (\frac {b\,x}{2}-\frac {b\,c^2\,x^4}{2}\right )}{2\,x^3-2\,c^2\,x^6}-\frac {3\,b\,c}{2\,\sqrt {x}}-\frac {b\,\ln \left (c\,x^{3/2}+1\right )}{4\,x^2}+\frac {b\,c^{4/3}\,\ln \left (\frac {\sqrt {3}+c^{2/3}\,x\,1{}\mathrm {i}+c^{1/3}\,\sqrt {x}\,4{}\mathrm {i}-\sqrt {3}\,c^{2/3}\,x+1{}\mathrm {i}}{2\,c^{2/3}\,x+1+\sqrt {3}\,1{}\mathrm {i}}\right )\,\sqrt {-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}{4}+\frac {b\,c^{4/3}\,\ln \left (\frac {\sqrt {3}\,c^{2/3}\,x+c^{2/3}\,x\,1{}\mathrm {i}-c^{1/3}\,\sqrt {x}\,4{}\mathrm {i}-\sqrt {3}+1{}\mathrm {i}}{2\,c^{2/3}\,x+1-\sqrt {3}\,1{}\mathrm {i}}\right )\,\sqrt {\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\,1{}\mathrm {i}}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c*x^(3/2)))/x^3,x)

[Out]

(b*c^(4/3)*log((c^(1/3)*x^(1/2) + 1)/(c^(1/3)*x^(1/2) - 1)))/4 - a/(2*x^2) + (log(1 - c*x^(3/2))*((b*x)/2 - (b
*c^2*x^4)/2))/(2*x^3 - 2*c^2*x^6) - (3*b*c)/(2*x^(1/2)) - (b*log(c*x^(3/2) + 1))/(4*x^2) + (b*c^(4/3)*log((3^(
1/2) + c^(2/3)*x*1i + c^(1/3)*x^(1/2)*4i - 3^(1/2)*c^(2/3)*x + 1i)/(3^(1/2)*1i + 2*c^(2/3)*x + 1))*((3^(1/2)*1
i)/2 - 1/2)^(1/2))/4 + (b*c^(4/3)*log((c^(2/3)*x*1i - 3^(1/2) - c^(1/3)*x^(1/2)*4i + 3^(1/2)*c^(2/3)*x + 1i)/(
2*c^(2/3)*x - 3^(1/2)*1i + 1))*((3^(1/2)*1i)/2 + 1/2)^(1/2)*1i)/4

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x**(3/2)))/x**3,x)

[Out]

Timed out

________________________________________________________________________________________